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Dynamic Strain Response of an Infinite Beam and Inverse 
Calculation of Impact Force by Numerical Laplace Transform 

Kim Jinseok* and Min Oakkey** 
Received January 7, 1997) 

A general method for determining the dynamic strain response of an infinite beam to impact 

force is presented. The method consists of formulating and solving the dynamic problem in the 

Laplace transform domain and obtaining the strain response by numerical inversion of  the 

transformed solution. Also, an inverse method for estimating the impact force on an infinite 

beam is investigated. Once the strain is known, it is shown how the impact force can be 

reconstructed. 
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1. Introduction 

There has been a long-l ived interest in elastic 

flexural wave propagation in an infinite beam 

and the associated problem of strain response of 

the beam due to a suddenly applied impact force. 

McGhie (1990) solved the Bernoulli-Euler beam 

equation using an impulse response function, and 

a wave motion solution of the flexural response of 

an infinite length beam was presented. Doyle 

(1986, 1989) solved a force-displacement relation 

for the Bernoulli-Euler beam in the frequency 

domain using the Fourier transform approach. 

The strain response is obtained by numerical 

inversion of the transformed solution. Doyle 

(1984a) established a force-strain relation for the 

Timoshenko beam in the frequency domain using 

the Fourier  transform approach. And, inversion 

by use of  a Fourier transform algorithm (Paz, 

1985) was shown to allow the impact force his- 

tory to be determined. The major advantage of 
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using this transform approach is that ~he convolu- 

tion and deconvolution processes are simply 

performed by multiplication and division, respec- 

tively. The inverse problem is much more difficult 

to solve than the direct problem where one is 

concerned with finding the response of a system 

to a given input or excitation. In the most general 

inverse problem, the response is known, but either 

the equations describing the process are unknown 

or the inputs are unknown. Typically, the inverse 

problem arises because measurements can only be 

made in easily accessible locations or perhaps a 

state variable can only be measured indirectly. 

This paper derives a force-strain relation for 

the Bernoull i-Euler beam using tlhe Laplace 

transform approach. The strain response and the 

impact force history are obtained by numerical 

inversion of the transformed solution using a 

Laplace transform algorithm (Krings et al., 1979 ; 

lm et al., 1994). The Laplace transform approach 

is better than the Fourier transform approach in 

that it can obtain the exact strain response in the 

direct problem. The resulting strain responses are 

compared to those of Doyle (1986). 

2. F o r c e - S t r a i n  Relat ion  

Doyle (1984b) solved a force-displacement 

relation in an explicit form. The structure is 
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assumed to be a narrow beam of the Bernoulli 

-Euler type. The applied force and the beam 

displacement are related by 

J Oxen- p ~ t ~  = p (t) (|) 

where E l  and pA are the stiffness and mass per 

unit length of the beam, respectively. F ( t )  is the 

applied force, v is the displacement of the beam 

and x is the distance from the point of impact. 

The boundaries are considered to be at infinity. 

The force-strain relation becomes 

_Q17 inl- x: �88 (2) 
e ( x ,  t )=  J0 ~ LO2(t-r) 

where 

h __(  E1 ~1/4 
01- -  4 E I . ~  \ p A ]  ' 

I E 1  \i/2 

Ol and Oz depend only on the material and 

section properties of the beam. e ( x ,  t)  is the 

strain at an arbitrary position x and h is the 

thickness of the beam. 

Doyle (1986) solved a force-displacement rela- 

tion for the Bernoulli-Euler beam in the fre- 

quency domain using the Fourier transform 

approach. The spectral relation between force and 

strain is 

f f  . h F -~x ie-ihx] (x, w) = ~ L e  -- (3) 

where 

k ~ r p A q l l 4  ='/co'L J ' 

and /~ are the strain spectrum and the force 

spectrum, respectively, and co is the frequency. 

A new force-strain relation for the Bernoulli- 

Euler beam is developed using the Laplace trans- 

form approach. Consider an infinite beam shown 

in Fig. 1. 

F 
! 

M, i M~ 

V, Vz 
I X 

Fig.  1 Free body diagram for an infinite beam 

The beam model assumes that only bending 

moment M and shear force V resultants act at the 

beam section. For ease of modeling, the force is 

assumed to act at a massless joint. Application of 

the Laplace transform with respect to time to Eq. 

(1) under zero initial conditions yields 

d4~  
d x  4 ~- 4/'(-4/~ = / ~ (4) 

where 

"F~ 
p is the mass per unit volume, A is the cross- 

sectional area, E is the Young's modulus, I is the 

moment of inertia of the cross section about the 

neutral axis and s is the Laplace transform param- 

eter. The homogeneous solution of Eq. (4) takes 

the following form (Beskos et al., 1975) 

(x,  s) = e ~x ( A c o s K x  + B s i n K x )  

1 + e -Kx ( C c o s K x  + D s i n K x )  (5) 

where A, /3, C and D are constants. Since the 

beam is infinite then only two waves are generat- 

ed. 

x < 0 ,  g ( 1 ) = e K X ( A c o s K x + B s i n K x )  (6) 

x >0, ~(2)= e -~x ( C c o s K x  + D s i n K x )  (7) 

Imposing continuity of displacement and slope at 

the joint, and writing the equations of motion of 

the joint itself gives (at x = 0 )  

Displacement: g(~)= z5(2) 

Slope: rig(l) _ dO(2) 
dr dx 

Moment: E I  dx  2 = E I  dx  2 

d 3 
Shear Force: - E I  .d3 ~(1) E 1  

d x  3 - d x  3 

- •  (8) 

Substituting Eqs. (6) and (7) into Eq. (8) gives 

the displacement and the strain for the positive x 

direction (x >0) as 

- e  ~ X ( c o s K x + s i n K x )  F (9) 
~(2) = 8 E I K  3 

- e -~x (cos K x - s i n  K x )  h F (10) 
6.(2) = 8 E I K  

When the force spectrum ff  is known, then the 

strain spectrum (and hence the strain history) at 

an arbitrary position x can be obtained. The 
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transfer function for the strain is 

- e - K ~  (cos K x - s i n  Kx) h 
H (x, s) - 8 E I K  

( l l )  

The advantage of Eq. (10) is that the transformed 

force is obtained by solving an algebraic equa- 

tion. 1i" a strain history is measured at an arbitrary 

position x, then the force history causing it can 

also be reconstructed by 

8 E I K  K x ) h  &2 ) (12) i f =  - e-~X(cos K x - s i n  

This is the fundamental relation for obtaining the 

impact force from the strain. Eqs. (10) and (12) 

correspond to the following two cases, respective- 

ly: ( i ) given the force, the strain at an arbitrary 

position x can be computed by Eq. (10), ( i i )  

given the strain at a position x, the force can be 

reconstructed by Eq. (12). Of course, once the 

Laplace transform components are obtained, the 

time histories are obtained simply by using the 

inverse Laplace transform. In this case, the force 

is obtained at the center of the beam (x =0).  

3. Computer Implementation 

A numerical Laplace transform algorithm can 

be used to conveniently convert a time function 

into its frequency components. Krings and Waller 

(1979) proposed a method of numerical Laplace 

transform using the algorithm of the Fast Fourier 

t r ans fo rm(FFT) .  The equations defining the 

Laplace transform and its inverse transform with 

v ( l )  = 0  for t < 0  are 

(s) = f ~ v  (t) e-*tdt 

v (t) - 2rci j,:,-,.= ~ (s) e*tds (13) 

where 

s = y + i w  

Using the algorithm of the FFT,  it is favourable 

to integrate along lines parallel to the imaginary 

axis, i. e. ), is constant, and it follows that d s =  i 
dew Then the Laplace transform can be converted 

into the Fourier transform 

g (s) =J,=o v (t) e -~ ' e -~ td t  

= F T ~ v * ( t ) J  (14) 

1 ~ erte io~ta~ 0 v ( t )  =~s ~(s) 
--er~ l - f  ~ g (s )  e~'a'w 
- -  2 z  J o ~ = - =  

= er~FT-1E g (s) ] (I 5) 

where FT[ . . .  1 is the Fourier transform opera- 

tor. For  the evaluation of the Fourier  integrals 

with the digital computer, discrete Fourier  trans- 

form is used. It results from the continuous for- 

mula if only a finite time interval T is considered. 

This time internal is divided into N equal-  

time segments and the integration is performed by 

using the Euler formula 

t T \N-a 
(Wj) =~)k~=O EV ( tk)e  ytk] c-i02jtk (16) 

/ 1 \N-1 e"~ v(th) = er '~{-~ -} ~, [g  (w~) (17) 
\ l /j=o 

where j ,  k = 0 ,  l, 2, ..., N - I  
For example, the force history can be represent- 

ed by 

/ I \ N 1  
F ( t h ) = e r t k l - - I  ~ ~F(coj)e'~"~ 1 (18) 

\ T].i=o 

where /7(w~) are the Laplace transform compo- 

nents at the discrete frequencies w~. It is suggested 

that one should select ~'T from 3 to 10 for good 

results (Krings et al., 1979 ; l m  et al., 1994). The 

value of  ) , T = 6  has been used in this work. If 

only strain for the forward wave is considered 

then Eqs. (10) and (12) can be written as fol- 

lows : 

g ( x ,  w j ) = H ( x ,  w~) ' f f (w j )  (19) 

(x, wj) (20) 
F(cos) - H (x,  cos) 

4. Numerical Example 

Following numerical examples serve to illus- 

trate the Laplace transform approach for deter- 

mining the dynamic strain response of an infinite 

beam and the inverse method in estimating the 

impact force. All the numerical computations 

were performed by a personal computer. For  the 
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beam analysis, material properties and beam 

dimensions are assumed as nominal steel (see 

Table 1). 

To illustrate some of the problems that arise in 

the numerical computations, the force shown in 

Fig. 2 is used as an input at the origin to obtain 

the strain history at various locations. 

Figure 3 shows the effect of the window sizes 

on the Laplace transform approach and the Four-  

ier transform approach (Doyle, 1986). 

Strain histories at x = 0  are computed with a 

Table 1 Material properties and parameters used in 

the examples 

Proper ty /Parameter  Value 

E 210 GPa 

p 7.86 g /cm 3 

Width 5 mm 

Thickness 1 mm 

500 

o 

0 
0 

i 

0.001 0.002 

tlme(aec) 

A sample force history Fig. 2 

0.008 

sampling time of 10its. In Fig. 3, N is the number 

of  the sampling points. If the same sampling rate 

is kept, then the window size can only be in- 

creased by increasing the number of sampling 

points. For  this particular beam problem, a non- 

zero value of  strain should persist for all time. 

However, in Fig. 3(a) ,  the finite window size 

forces the strain to the initial value too soon. The 

distorted result of Fig. 3 (a) is due to the singular 

point in Eq. (3). In order to meet the initial 

condit ion of strain history, the result of Fig. 3 (a) 

should be corrected. Figure 3 (b) shows the result 

of  the Laplace transform approach which gives 

better results than the Four ie r  transform 

approach in the whole window size. 

Figure 4 shows the strain histories at locations 

x/h=O, 100 and 200. 

Once the transfer function at any location is 

known the strain history at the location is 

computed by Eq. (19). To compare the accuracy 

of  Laplace transform approach with that of Four- 

ier transform approach (Doyle, 1986), the strain 

histories using the Fourier  transform approach 

are obtained by Eq. (3). On the other hand the 

solution of Eq. (2) is used as the exact one at x =  

0. But, at an arbitrary position x, the force-strain 

relation of Eq. (2) cannot be obtained in a closed 

form and therefore an approximate procedure 

(Doyle, 1984b) is used. Consider the force history 

to be made up of piece-wise constant segments, 

The integral can be replaced by a summation as 

follows : 

0.015 - 

0.01 

"E N = 258 N = 512 N : 1024 EXACT, Eq.(2) E 
O.OO5 ~ / 

i 

-0.005 
0 0.002 0.004 0.006 0.008 0,01 

Ume(sec) 

(a) Fourier transform approach 

Fig. 3 

0.015- 

0.01 
E 

E 

~ 0.005 - 

EXACT, Eq.(2) 
�9 N = 1024 
•  
+ N = 256 

0.002 0.004 0.006 0.008 

tlme(sec) 

(b) Laplace transform approach 

The sensitivity of the computed strain history to the window size 

0.01 
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0.015 0,006 

0.01 

E 

0.005 

-0.005 

0.026 

� 9  Eq. (2) 

- -  L A P L A C E  

- " FOURIER 

0 . 0 0 1  0.002 0.003 

tlme(eec) 

(a) x/h=O 

APPROX,Eq. (21, 

~,~ , ' . - - ' ,  -- L~PLaCe  g o.O02o 
.E 

-0 .003  - 

- 0 . ~ 6  ' " 

0 0.001 0.002 o.003 

time(sec) 

(c) x/h=200 

Fig. 4 Strain histories at different monitoring posi- 
tions 

e(x,  t ) = ~ [ P ( x ,  t, r ~ + , ) - P ( x ,  t, v,,)] 
n 

F(r,§ 

where p is a known function given by 

:~ '  : : Jr] dr 
P(x, t, vn)=-O, Jo sin[-o2(t- r ) 4 ] ~ - - r ) -  

2 ~ "  zz~ z = - O ~ [ -  4 t -  r , , s m ( ~ - - T )  

2 x , / ~ {  l ~z 2 n 
~ - +  f ( z ) s in (~- - -T)  + 

7(Z z ;T 

and 

(2~) 

1 +0.926z 
f ( z )  ~ 2 +  1.792z+3.104z z 

1 
g(z )  ~ 2+4.142z+3.492z2+6.670z 3 

The solution of Eq. (21) is used as an approxi- 

0,002 - 

g 

 .0.002 1 
- 0 . 0 0 6  ~ 

Fig. 4 

APPROX,Eq, (~] 
- -  LAPLACE 

- "FOURIER 

0 0.001 0.002 0.003 

tfme(sec) 

(b) x/h=100 

Strain histories at different monitoring posi- 
tions 

mate solution in Figs. 4(b) and 4(c). Figure 4 

shows comparisons between the Laplace trans- 
form approach and the Fourier transform 

approach at three different locations. J'he numeri- 

cal Laplace transform and the numerical Fourier 
transform algorithm are used with 10/2s sampling 

time and 1024 sampling points. The Laplace 
transform approach yields better approximations 

than the Fourier transform approach. These 
results confirm the adequacy of the Laplace trans- 

form approach. 

On the other hand, if the strain is measured at 

any location then it can be used to reconstruct the 
force history at the center, i. e. at the impact point, 

of the beam. The basic scheme to obtain the force 
is to take the strain history e( t ) ,  sample it every 

At', obtain the Laplace transform components 0 

(cos, x = 0 )  and use Eq. (20) to obtain /w(r.0j). A 
frequency analysis requires a signal sample long 
enough to extract the harmonic content. However, 
since sample window are finite it is necessary to 

do a preprocessing of the strain data. Padding 
with zeros helps to insure that the signal is treated 

as a transient (Doyle, 1984a). Figure 5 shows the 
effect of two sample sizes. 

In Fig. 5, S. P. denotes the number of sampling 
points. For force reconstruction a 1024-point 
numerical Laplace transform is used with a sam- 
pling time of  10gs and strain response of Eq. (2) 

is used as sampted data. The reconstructed force 
history exhibits a significant disturbance at the 

point of truncation. If the sample size is large 
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Fig. 5 The effect of sample size on the force history. 

enough compared to the length of the force his- 

tory, this problem is minimized. 

5. C o n c l u s i o n s  

A new force-strain relation for the Bernoulli-  

Euler beam is derived using the Laplace trans- 

form approach. The Laplace transform approach 

to dynamic strain response analysis and impact 

force reconstruction problems on an infinite beam 

can be simple, inexpensive and very accurate. 

Operating on the force strain relation in the fre- 

quency domain allows signals for arbitrary posi- 

tion x to be handled much more conveniently 

than is the case in the time domain. The strain 

response analysis of the Laplace transform 

approach gives a significant improvement than 

that of Fourier  transform approach. In practice, 

beam structures have a finite length. Eq. (10) 

should be generalized so as to include reflection 

effects from boundaries. 
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